

Event-Based Federated Q-Learning

Guener Dilsad ER Michael Muehlebach Max Planck Institute for Intelligent Systems

Summary

- Objective: Learning a policy that performs well across all environments while maintaining data privacy among the agents.
- Challenge: Communication overhead in Federated RL.
- **Solution:** Event-Based Federated Q-Learning (EBQAvg) algorithm. **Key mechanism:** Agents communicate updates only if there are significant changes.
- **Theoretical Analysis:** Trade-off between communication efficiency, environment heterogeneity (different state-action pairs and state transitions) and convergence rate.
- **Empirical Results:** Tested in Windy Cliff and Cart Pole environments. Our approach significantly reduces communication (typically around 70-80%) without sacrificing performance.
- Impact: Enables efficient, scalable federated reinforcement learning.

Algorithm 1 Event-Based QAvg Algorithm (EBQAvg)

Require: Number of agents n, number of rounds T, learning rate λ_t , discount factor γ , communication threshold δ , number of local updates E

Initialize Q-tables Q^k for each agent k

for t = 1 to T do

for k=1 to n do

Receive broadcasted $Q_t^k \leftarrow \bar{Q}_t$

Perform E local updates of Q_t^k with standard Q-Learning update

$$Q_{t'+1}^{k}(s, a) \leftarrow (1 - \lambda_{t}) Q_{t'}^{k}(s, a) + \lambda_{t} [R(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{k}(s'|s, a) \max_{a' \in \mathcal{A}} Q_{t'}^{k}(s', a')]$$

Send Q_{t+1}^k if **communication event** is triggered $|Q_{t+1}^i - Q_{[t]}^i| > \delta$, where $Q_{[t]}^i$ denotes the value of Q^k that has been last communicated

end for

Global Aggregation of Q-tables from all agents at server $\bar{Q}_{t+1} = \frac{1}{n} \sum_{i=1}^{n} Q^{i}_{[t+1]}$

Broadcast Q_t to all agents end for

Event-Based Communication in Federated Learning

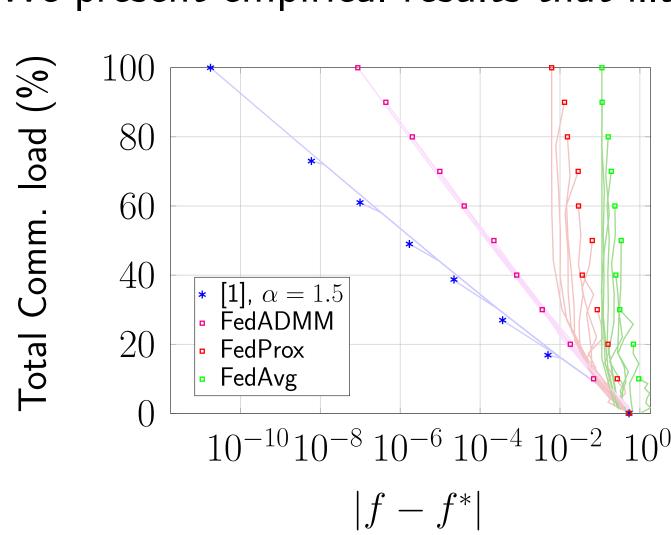
Event-based communication reduces communication by triggering updates only when necessary and is robust to heterogeneous data-distributions among agents and communication failures.

Event-based communication is also effective in a distributed learning setting, where the aim is to minimize $\sum_{i=1}^{n} f^{i}(x)$, see [1]. The event-based framework reduces communication by only transmitting updates when significant changes occur. We established the following theoretical result in a convex setting,

$$|\xi_k - \xi_*|^2 \le \kappa_P |\xi_0 - \xi_*|^2 \left(1 - \frac{\alpha}{4\kappa^{\epsilon + \frac{1}{2}}}\right)^{2k} + \frac{60\kappa^{2 + 2\epsilon}}{\alpha(1 - |\alpha - 1|)} \Delta^2,$$

where ξ_k is the server variable and ξ_* is the optimizer of $\sum_{i=1}^n f^i(x)$. Furthermore, Δ represents the error arising from the event-based communication, κ_P is a function of relaxation parameter α and condition number κ of the objective function $f(x) = \sum_{i=1}^n f^i(x)$, and ϵ is a parameter that scales the step-size of the algorithm.

We present empirical results that illustrate the effectiveness of our approach.



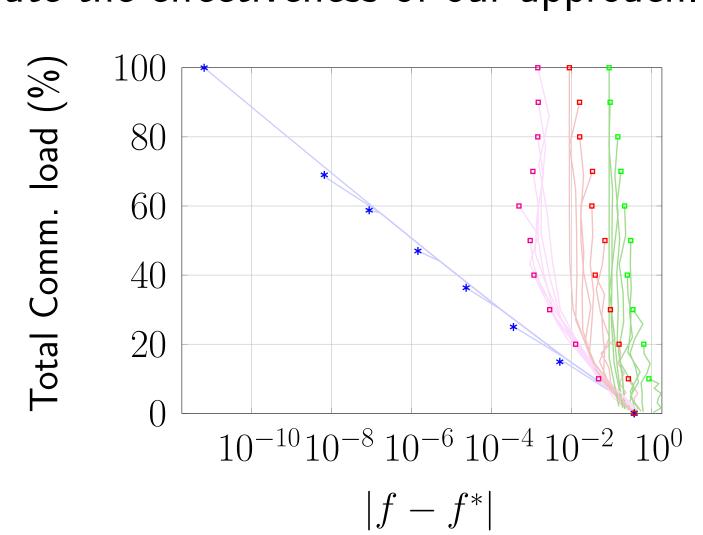


Fig. 1: The figure shows the communication load versus accuracy trade-off for different methods applied to two distinct problems: linear regression (left panel), and LASSO (right panel).

[1] G. Dilsad Er, Sebastian Trimpe, and Michael Muehlebach. "Distributed Event-Based Learning via ADMM". In: arxiv:2405.10618 (2024)

Main Theorem

- ullet Goal of FedRL: Enable n agents to jointly learn a policy function or a value function that performs uniformly well across all environments.
- Privacy constraints prevent agents from sharing their previous trajectories.
 Optimization Problem

$$\max_{\pi} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left\{ \sum_{t=1}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \mid s_{0} \sim \mathcal{D}, a_{t} \sim \pi(\cdot \mid s_{t}), s_{t+1} \sim \mathcal{P}_{i}(\cdot \mid s_{t}, a_{t}) \right\}$$

where \mathcal{D} is the common initial state distribution, \mathcal{P}_i is the state transitions of agent i.

Theorem: Let the step-size of Algorithm 1 be $\lambda_t = \alpha$ and the discount factor be γ . Let Q_* be the Q-function of the optimal policy π^* (see above maximization).

• If the number of local updates E is chosen as $E \geq \frac{\log 2}{\alpha(1-\gamma)}$, the following inequality holds:

$$|\bar{Q}_t - Q_*|_{\infty} \le \left(\frac{1}{2}\right)^t |\bar{Q}_0 - Q_*|_{\infty} + 2\delta + 3\epsilon.$$

In the previous inequality, \bar{Q}_t denotes the average of the distributed Q functions, $\bar{Q}_t = \frac{1}{n} \sum_{k=1}^n Q_{[t]}^k$, where $Q_{[t]}^k$, last communicated by agents $\{1,\ldots,n\}$ at iteration t. δ represents the communication threshold, and ϵ bounds the difference between Q_* and the locally optimal Q-functions, i.e., $|Q_*^k - Q_*| \leq \epsilon$.

Empirical Evaluation

Event-based communication results in a better trade-off compared to random selection of communicating agents.

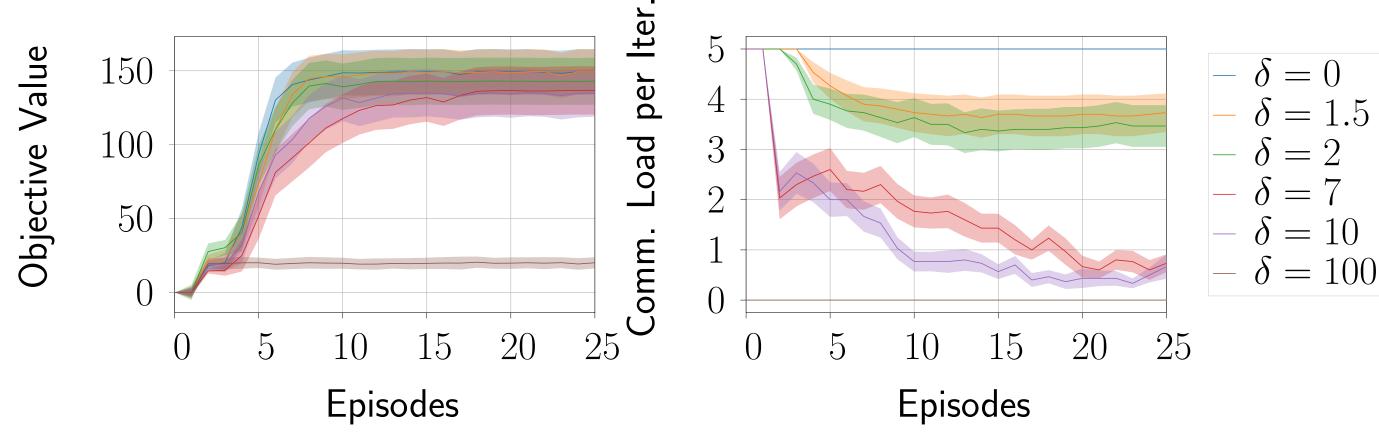
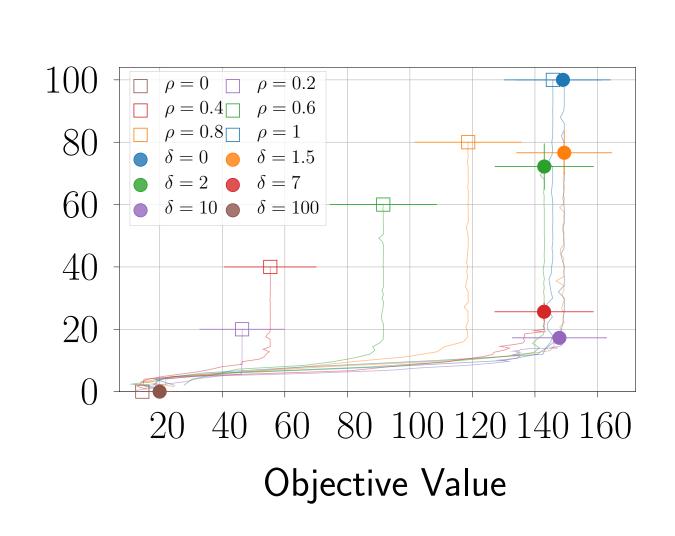


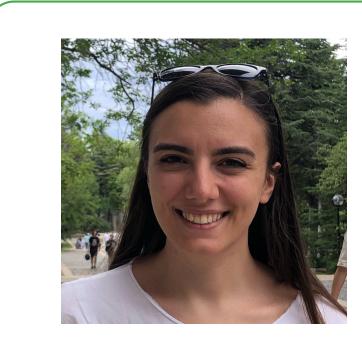
Fig. 2: Evolution of the objective over episodes for different comm. thresholds and corresponding comm. loads.

- Event-based framework significantly reduces the number of triggered communications.
- On the right, the circles represent results of event-based communication, squares represent random selection. Event-based communication achieves **better tradeoff** between communication load and objective value than random selection.



Our results highlight the potential of event-based communication in federated reinforcement learning.

By strategically transmitting updates, our scheme effectively reduces communication overhead while maintaining performance.



arxiv:[1]

OpenReview