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Summary

•Objective: Learning a policy that performs well across all environments
while maintaining data privacy among the agents.

•Challenge: Communication overhead in Federated RL.

•Solution: Event-Based Federated Q-Learning (EBQAvg) algorithm.

Key mechanism: Agents communicate updates only if there are signifi-
cant changes.

•Theoretical Analysis: Trade-off between communication efficiency, en-
vironment heterogeneity (different state-action pairs and state transitions)
and convergence rate.

•Empirical Results: Tested in Windy Cliff and Cart Pole environments.

Our approach significantly reduces communication (typically around 70-
80%) without sacrificing performance.

• Impact: Enables efficient, scalable federated reinforcement learning.

Algorithm 1 Event-Based QAvg Algorithm (EBQAvg)
Require: Number of agents n, number of rounds T , learning rate λt, discount factor γ,
communication threshold δ, number of local updates E
Initialize Q-tables Qk for each agent k
for t = 1 to T do
for k = 1 to n do
Receive broadcasted Qk

t ← Q̄t

Perform E local updates of Qk
t with standard Q-Learning update

Qk
t′+1(s, a)← (1−λt)Q

k
t′(s, a) + λt[R(s, a) + γ

∑
s′∈S

Pk (s
′|s, a)max

a′∈A
Qk

t′ (s
′, a′)]

Send Qk
t+1 if communication event is triggered |Qi

t+1−Qi
[t]| > δ, where Qi

[t] denotes

the value of Qk that has been last communicated
end for
Global Aggregation of Q-tables from all agents at server Q̄t+1 =

1
n

∑n
i=1Q

i
[t+1]

Broadcast Q̄t to all agents
end for

Event-Based Communication in Federated Learning

Event-based communication reduces communication by triggering updates
only when necessary and is robust to heterogeneous data-distributions
among agents and communication failures.

Event-based communication is also effective in a distributed learning setting,
where the aim is to minimize

∑n
i=1 f

i(x), see [1]. The event-based framework
reduces communication by only transmitting updates when significant changes
occur. We established the following theoretical result in a convex setting,

|ξk − ξ∗|2 ≤ κP |ξ0 − ξ∗|2
(
1− α

4κϵ+1
2

)2k

+
60κ2+2ϵ

α(1− |α− 1|)
∆2,

where ξk is the server variable and ξ∗ is the optimizer of
∑n

i=1 f
i(x). Further-

more, ∆ represents the error arising from the event-based communication,
κP is a function of relaxation parameter α and condition number κ of the
objective function f (x) =

∑n
i=1 f

i(x), and ϵ is a parameter that scales the
step-size of the algorithm.
We present empirical results that illustrate the effectiveness of our approach.
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Fig. 1: The figure shows the communication load versus accuracy trade-off for different methods applied to

two distinct problems: linear regression (left panel), and LASSO (right panel).

[1] G. Dilsad Er, Sebastian Trimpe, and Michael Muehlebach.“Distributed
Event-Based Learning via ADMM”. In: arxiv:2405.10618 (2024)

Main Theorem

•Goal of FedRL: Enable n agents to jointly learn a policy function or a
value function that performs uniformly well across all environments.

•Privacy constraints prevent agents from sharing their previous trajectories.

Optimization Problem

max
π

1

n

n∑
i=1

E

{ ∞∑
t=1

γtR(st, at) | s0 ∼ D, at ∼ π(· | st), st+1 ∼ Pi(· | st, at)

}
where D is the common initial state distribution, Pi is the state transitions
of agent i.
Theorem: Let the step-size of Algorithm 1 be λt = α and the discount
factor be γ. Let Q∗ be the Q-function of the optimal policy π∗ (see above
maximization).

• If the number of local updates E is chosen as E ≥ log 2
α(1−γ), the following

inequality holds:∣∣Q̄t −Q∗
∣∣
∞ ≤

(
1

2

)t ∣∣Q̄0 −Q∗
∣∣
∞ + 2δ + 3ϵ.

In the previous inequality, Q̄t denotes the average of the distributed Q
functions, Q̄t = 1

n

∑n
k=1Q

k
[t], where Qk

[t], last communicated by agents

{1, . . . , n} at iteration t. δ represents the communication threshold, and ϵ
bounds the difference between Q∗ and the locally optimal Q-functions, i.e.,
|Qk
∗ −Q∗| ≤ ϵ.

Empirical Evaluation

Event-based communication results in a better trade-off compared to ran-
dom selection of communicating agents.
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Fig. 2: Evolution of the objective over episodes for different comm. thresholds and corresponding comm.

loads.

•Event-based framework significantly
reduces the number of triggered
communications.

•On the right, the circles represent
results of event-based communica-
tion, squares represent random se-
lection. Event-based communication
achieves better tradeoff between
communication load and objective
value than random selection.
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Our results highlight the potential of event-based communication in federated
reinforcement learning.

By strategically transmitting updates, our scheme effectively reduces com-
munication overhead while maintaining performance.
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