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e Objective: Learning a policy that performs well across all environments
while maintaining data privacy among the agents.

e Challenge: Communication overhead in Federated RL.

e Solution: Event-Based Federated Q-Learning (EBQAvg) algorithm.

Key mechanism: Agents communicate updates only if there are signifi-
cant changes.

e Theoretical Analysis: Trade-off between communication efficiency, en-
vironment heterogeneity (different state-action pairs and state transitions)
and convergence rate.

e Empirical Results: Tested in Windy Cliff and Cart Pole environments.

Our approach significantly reduces communication (typically around 70-
80%) without sacrificing performance.

e Impact: Enables efficient, scalable federated reinforcement learning.
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Algorithm 1 Event-Based QAvg Algorithm (EBQAvg)
Require: Number of agents n, number of rounds 7, learning rate \;, discount factor -,
communication threshold 0, number of local updates £
Initialize Q-tables Qk for each agent £
fort=1to 71 do
for k=1tondo )
Receive broadcasted QF + Q;
Perform E local updates of QF with standard Q-Learning update
Qbr(5,a) ¢ (1= M) @bls,a) + M[R(s,0) +7 3 Pi(s] 5, 0) max Qh (', )
s'eS
Send Qfﬂ if communication event is triggered \Q§+1—th]\ > 0, where th] denotes
the value of Q¥ that has been last communicated
end for ) |
Global Aggregation of Q-tables from all agents at server (), = %Z?:l thﬂ]
Broadcast (), to all agents
end for
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Event-Based Communication in Federated Learning

Event-based communication reduces communication by triggering updates

only when necessary and is robust to heterogeneous data-distributions
among agents and communication failures.

Event-based communication is also effective in a distributed learning setting,
where the aim is to minimize >, f'(x), see [1]. The event-based framework
reduces communication by only transmitting updates when significant changes
occur. We established the following theoretical result in a convex setting,
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where & is the server variable and &, is the optimizer of > | f*(x). Further-
more, /A represents the error arising from the event-based communication,
rkp I1s a function of relaxation parameter v and condition number k of the
objective function f(z) = >_" | f'(x), and € is a parameter that scales the
step-size of the algorithm.

We present empirical results that illustrate the effectiveness of our approach.
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Fig. 1: The figure shows the communication load versus accuracy trade-off for different methods applied to

two distinct problems: linear regression (left panel), and LASSO (right panel).
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e Goal of FedRL: Enable n agents to jointly learn a policy function or a
value function that performs uniformly well across all environments.

e Privacy constraints prevent agents from sharing their previous trajectories.

Optimization Problem
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where D is the common initial state distribution, P; is the state transitions
of agent 1.

Theorem: Let the step-size of Algorithm 1 be A\; = « and the discount
factor be . Let (). be the ()-function of the optimal policy 7" (see above
maximization).
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o If the number of local updates E' is chosen as £ > Oﬁgj), the following

inequality holds:
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In the previous inequality, (); denotes the average of the distributed ()
functions, ), %22’21 Qﬁ], where sz], last communicated by agents

OO+25+36.

{1,...,n} at iteration . d represents the communication threshold, and €
bounds the difference between (), and the locally optimal ()-functions, i.e.,
k
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Empirical Evaluation

Event-based communication results in a better trade-off compared to ran-
dom selection of communicating agents.
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Fig. 2: Evolution of the objective over episodes for different comm. thresholds and corresponding comm.

loads.
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achieves better tradeoff between
communication load and objective
value than random selection.
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Our results highlight the potential of event-based communication in federated
earning.
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