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Our approach quantifies the impact of disturbances on the performance of algorithms,
offering fundamental insights for their theoretical analysis and understanding.

Summary

•Objective: Quantify disturbance-to-performance trade-offs for algo-
rithms that converge linearly in a task-relevant metric.

•Challenge: Disturbances impact the rate of convergence.
Dynamics are nonlinear.

•Solution: A systems-theoretic framework based on a rate-preserving
converse Lyapunov function under mild regularity (Lipschitzness) and
nominal convergence assumptions.

Key mechanism: Construct a rate-matching Lyapunov function V
where V is uniformly Lipschitz on compact sets

• Impact: Provides a unified, plug-and-play expression that

(i) sharpens κ−dependence in event-triggered ADMM (accuracy vs.
communication trade-off),

(ii) recovers classical algorithmic stability/generalization bounds,

(iii) matches optimal utility for noisy gradient descent.

Core Contributions

•Rate preserving Lyaponuv function:

V (ξ) := sup
k′≥0

d(ϕ(k′, ξ), x∗) τ
−k′.

V exists if the nominal algorithm dynamics are converging linearly at rate τ .

V is rate matching, which is non-standard in classical converse Lyapunov theory.

•Clear disturbance-to-performance bounds :
geometric decay + a steady-state bias ∝ disturbance magnitude

•Unified treatment across domains; avoids crafting Lyapunov functions
for each algorithm

Main Result
Theorem: Let the unperturbed algorithm be represented by the nominal
dynamics xk+1 = f (xk) and, satisfy the stability condition and the limit

d (ϕ(k′, xk), x∗) ≤ c0τ
k′d (xk, x∗) , lim

k′→∞
d (ϕ(k′, xk), x∗) τ

−k′ = 0

with a linear rate τ . Then, there exists a constant LV > 0 such that the
following bound holds for the perturbed algorithm dynamics,

d(zk, x∗) ≤ c0τ
k d(z0, x∗) + LVLe

k∑
j=1

τ k−j|ej−1|,

for all z0 ∈ S, where S ⊂ Rn is compact, zk denotes the state of the
perturbed algorithm zk+1 = g(zk, ek), ek represents the disturbance, and
Le>0 is the Lipschitz constant of disturbed dynamics with respect to e.

Scope, limitations, and assumptions

•Linear convergence required.

–Extensions to sublinear/non-exponential rates are treated via time-
varying rate schedules τ (i) in ongoing work [1].

•Local Lipschitz continuity in the disturbance (e) is assumed (ex-
cludes hard quantization and top-k without smoothing).

–Regularized or randomized/smoothed operators (Lipschitz-in-
expectation) can restore applicability.

Applications

Distributed Optimization with Event-triggered Communication

•For γ−strongly convex and β− smooth objectives, ADMM admits a nominal linear
rate τ = 1− α

2κε+0.5 (scaling in κ = β/γ as in [2])

•Event-triggered updates yield |ek| ≤ ∆, and |θk − θ∗| ≈ LVLe∆κϵ+1/2/α

• Improved κ−dependence: O(κ
1
2+ϵ∆) vs O(κ1+ϵ∆) in prior analysis [2]

Algorithmic Stability and Generalization

•Reproduces known bound [3] ϵstab ≤ 2L2
ℓ

γn under strong convexity and step size h = 2
β+γ.

Under convexity with step size hl ≤ 2
β, the bound becomes ϵstab ≤ 2L2

ℓ

n

∑k
l=1 hl.

• Stability emerges from the same Lyapunov template

•Change in one data point (D,D′) → bounded disturbance → stability gap

Privacy-Preserving Learning (Noisy Gradient Descent)

•With additive noise of variance σ2
n and strong convexity, choosing step size h = log(N)

2βN

yields E
{
|θprivN − θ∗|2

}
= O

(
σ2 log(N)

N

)
Under convexity, with h= 2

β
√
N+1

, the bound becomes E{ℓ(θprivN )−ℓ(θ∗)}≈O
(
σ2
n

)
.

Broader Connections

Input to State Stability

ISS quantifies how disturbances bound the state of a system. Our distur-
bance–to–performance estimate is ISS-type with explicit decay and gain.

d(zk, x
∗) ≤ c0τ

kd(z0, x
∗) +

LVLe

1− τ

(
sup
j≤k

|ej|∞
)

•Compared to classical ISS, our converse Lyapunov construction preserves the nominal
rate and yields a quantitative steady-state“gain”∼ (LVLe)/(1− τ ).

Performative Prediction
Algorithms often shape their environments; in performative prediction, the environment
responds via a map ∆. This is modeled as a state-dependent disturbance,

ek = ∆(zk) (static response) or ek+1 = ∆k(ek, zk) (dynamic response).

zk+1 = gk(zk, ek)
z

ek+1 = ∆k(ek, zk)
e

e z

•Performative prediction is a special case of our inter-
connected model; the same Lyapunov template cer-
tifies stability without constructing problem-specific
Lyapunov functions.

•Continuity of ∆ ensures existence of a performative
fixed point (Brouwer). If ∆ is Lipschitz with suffi-
ciently small gain (relative to LVLe and (1− τ )), tra-
jectories converge to this fixed point.
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