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Our approach quantifies the impact of disturbances on the performance of algorithms,
offering fundamental insights for their theoretical analysis and understanding.
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ummary Applications
e Objective: Quantify disturbance-to-performance trade-offs for algo- Distributed Optimization with Event-triggered Communication
rithms that converge linearly in a task-relevant metric. e For v—strongly convex and 5— smooth objectives, ADMM admits a nominal linear
e Challenge: Disturbances impact the rate of convergence. rate 7 = 1 — 5555 (scaling in k = /v as in [2])
Dynamics are nonlinear. o Event-triggered updates yield |e,| < A, and |0 — 0, =~ Ly L. A2 /o
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e Solution: A systems-theoretic framework based on a rate-preserving e Improved 1 —dependence: O(x2"“A) vs O(k™*A) in prior analysis |2}

converse Lyapunov function under mild regularity (Lipschitzness) and
nominal convergence assumptions.

Algorithmic Stability and Generalization

Key mechanism: Construct a rate-matching Lyapunov function V e Reproduces known bound [3] €0 < i_[f under strong convexity and step size h =
where V' is uniformly I—'P_SCh'tZ on compact sets Under convexity with step size h; < % the bound becomes e, < %L?Zle h;.
e Impact: Provides a unified, plug-and-play expression that e Stability emerges from the same Lyapunov template

(1) sharpens k—dependence in event-triggered ADMM (accuracy vs. e Change in one data point (D, D’) — bounded disturbance — stability gap

communication trade-off),

(i) recovers classical algorithmic stability /generalization bounds, Privacy-Preserving Learning (Noisy Gradient Descent)

i11) matches optimal utility for noisy gradient descent.

( ) P y Yy 8 o With additive noise of variance o2 and strong convexity, choosing step size h = 102%(%)
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the bound becomes 41{8(9%iv)—€(9*)}z0(07%).

: : 9
Under convexity, with h NAESE
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e Rate preserving Lyaponuv function:
!
V(&) :=sup d(¢(K', &),z ) 77"
k'>0
V' exists if the nominal algorithm dynamics are converging linearly at rate 7.

V' is rate matching, which is non-standard in classical converse Lyapunov theory.
ISS quantifies how disturbances bound the state of a system.  Our distur-

bance—to—performance estimate is |SS-type with explicit decay and gain.

e Clear disturbance-to-performance bounds :

geometric decay -+ a steady-state bias o< disturbance magnitude

- | | | | d(zg, ) < comd (2, 2*) A
e Unified treatment across domains; avoids crafting Lyapunov functions
for each algorithm e Compared to classical ISS, our converse Lyapunov construction preserves the nominal

rate and yields a quantitative steady-state “gain” ~ (LyL.)/(1 — 7).

Main Result

Theorem: Let the unperturbed algorithm be represented by the nominal
dynamics x.1 = f(x)) and, satisfy the stability condition and the limit

d (oK, zp), z2) < e d (zp, ), klim d (oK, zp), ) 7% =0
'—00

Performative Prediction

Algorithms often shape their environments; in performative prediction, the environment
responds via a map A. This is modeled as a state-dependent disturbance,

er = A(z;) (static response) or e;.1 = Ai(er, z) (dynamic response).

e Performative prediction is a special case of our inter-
connected model; the same Lyapunov template cer-
tifles stability without constructing problem-specific

~ Lyapunov functions.

with a linear rate 7. Then, there exists a constant L > 0 such that the

following bound holds for the perturbed algorithm dynamics,
k

d(zk, 2.) < ot d(z0,2.) + LyLe Y 77]ej ],
=1
for all zy € S, where S C R" is compact, z; denotes the state of the

perturbed algorithm z.,1 = g(2x, er), er represents the disturbance, and
L.>0is the Lipschitz constant of disturbed dynamics with respect to e.

Rk+1 = gk(zka €k)

e Continuity of A ensures existence of a performative
er+1 = Aglex, 2) fixed point (Brouwer). If A is Lipschitz with suffi-

e ciently small gain (relative to Ly L. and (1 — 7)), tra-
jectories converge to this fixed point.

Prior Work [2]
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Scope, limitations, and assumptions

e Linear convergence required.

—Extensions to sublinear/non-exponential rates are treated via time-

varying rate schedules 7(i) in ongoing work [1]. References

e Local Lipschitz Continuity In the disturbance (e) IS assumed (ex— [1] G. Dilsad Er, Sebastian Trimpe, and Michael Muehlebach. “A Systems-Theoretic View on the Conver-

- - - - f Algorithms under Disturbances”. In preparation.
cludes hard quantization and top-k without smoothing). BEN=E o7 78
. P g) [2] G. Dilsad Er, Sebastian Trimpe, and Michael Muehlebach. “Distributed Event-Based Learning via

— Regularized or ra ndomized/smoothed operators (Lipschitz—in— ADMM". In: International Conference on Machine Learning 267 (2025), pp. 15384-15418.

expectation) can restore applicability [3] Moritz Hardt, Benjamin Recht, and Yoram Singer. “Train faster, generalize better: Stability of stochastic
P ) PP Y gradient descent”. In: International Conference on Machine Learning 48 (2016), pp. 1225-1234.
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