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Summary

•Objective: Develop a communication-efficient distributed optimization algorithm that
handles non-i.i.d. data distribution across agents.

•Challenge: High communication overhead and convergence with non-i.i.d. data.

•Solution: An event-based communication strategy that reduces unnecessary data
exchanges while maintaining model accuracy.

Key mechanism: Agents communicate updates only when significant changes oc-
cur, based on predefined thresholds.

•Theoretical Analysis: Explores the trade-off between communication efficiency,
model accuracy, and convergence speed.

•Empirical Results: Evaluated on MNIST and CIFAR-10 datasets.

Our method reduces communication costs by over 70% while preserving high classi-
fication accuracy.

• Impact: Provides a scalable, efficient solution for large-scale distributed optimization
in federated learning.

We tackle a distributed optimization problem where multiple agents with local
datasets collaborate to minimize a global objective function, represented as the sum
of their individual objectives. The non-independent and identically distributed
(non-i.i.d.) data across agents poses challenges for global optimality, requiring com-
munication to ensure convergence.
The problem is formulated as a consensus problem:

min
x1,...,xN∈Rn

N∑
i=1

f i(xi) + g(z), subject to xi = z, ∀i = 1, . . . , N,

where g(z) represents nonsmooth part of the objective function, and z is the global
consensus variable.
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Algorithm 1 Event-Based Distributed Learning with Over-Relaxed ADMM
Require: Number of agents N , number of rounds tmax, local objective functions f i, penalty parameter ρ,
communication thresholds ∆d,∆z, reset period T

Require: Initialize x̂i0 = x0, ẑ0 = ζ0 = x0, ûi−1 = ui0
for k = 0 to tmax do
for i = 1 to N do
ẑik ← event-based receive of zk+1 − z[k] Agent i
uik = uik−1 + αxik − ẑik + (1− α)ẑik−1
xik+1 = argminxi f

i(xi) + ρ
2|x

i − ẑik + uik|2 –> Local Training
event-based send of dik+1 − di[k] where dik+1 = αxik+1 + uik

end for
ζ̂k ← event-based receive of dik+1 − di[k] Agent N+1

zk+1 = argminz g(z) +
Nρ
2 |z − ζ̂k + (1− α)zk|2 –> Global Aggregation

event-based send of zk+1 − z[k]
if mod(k + 1, T ) = 0 then
perform reset → ζ̂k = ζk, ẑk = zk

end if
end for

A communication is triggered by the agent if the value dik+1 deviates by more than
the predefined threshold ∆d > 0 from the last communicated value di[k]. Specifically,

communication occurs if |dik+1 − di[k]| > ∆d, and the difference dik+1 − di[k] is then sent

out. If |zik+1 − zi[k]| > ∆z, and the difference zik+1 − zi[k] is sent out by the server.

References

[1] G. Dilsad Er, Sebastian Trimpe, and Michael Muehlebach. “Distributed Event-Based Learning via
ADMM”. In: arxiv:2405.10618 (2024).

Event-Based Communication in Federated Learning

Event-based communication reduces communication by triggering updates only when
necessary and is robust to heterogeneous data-distributions among agents and com-
munication failures.

Event-based communication is also effective in a distributed learning setting, where the
aim is to minimize

∑n
i=1 f

i(x), see [1] for more details.
The event-based framework reduces communication by only transmitting updates when
significant changes occur. We established the following theoretical result in a convex
setting,

|ξk − ξ∗|2 ≤ κP |ξ0 − ξ∗|2
(
1− α

4κϵ+1
2

)2k

+
60κ2+2ϵ

α(1− |α− 1|)
∆2,

where ξk is the server variable and ξ∗ is the optimizer of
∑n

i=1 f
i(x). Furthermore, ∆

represents the error arising from the event-based communication which scales by the
number of agents, κP is a function of the relaxation parameter α and the condition
number κ of the objective function

∑n
i=1 f

i(x), and ϵ is a parameter that scales the
step-size of the algorithm.

Emprical Evaluation

Event-based communication reduces communication cost and result in a better trade-
off compared to well-known baselines FedAvg, FedProx and FedADMM.
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The figure shows the communication load versus accuracy trade-off for different methods
applied to two distinct problems: linear regression (left panel), and LASSO (right panel).
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Comparison of different federated learn-
ing methods with respect to the result-
ing trade-off between total communica-
tion load and classification accuracy on
the entire MNIST dataset. Setup con-
sists of N = 10 training agents, where
each agent i posesses only images of
digit-i.

Comparison of different federated learn-
ing methods on the CIFAR-10 dataset
with respect to the resulting trade-off
between total communication load and
classification accuracy on the test set.
The setup includes N = 100 agents with
a non-i.i.d. data distribution.
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The left panel compares the communication load versus solution accuracy for different
communication methods applied to the linear regression problem. The right panel visu-
alizes the agent network with 50 agents connected by 1762 edges.


