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Summary

e Objective: Develop a communication-efficient distributed optimization algorithm that
handles non-i.i.d. data distribution across agents.

e Challenge: High communication overhead and convergence with non-i.i.d. data.
e Solution: An event-based communication strategy that reduces unnecessary data
exchanges while maintaining model accuracy.
Key mechanism: Agents communicate updates only when significant changes oc-
cur, based on predefined thresholds.

e Theoretical Analysis: Explores the trade-off between communication efficiency,
model accuracy, and convergence speed.

e Empirical Results: Evaluated on MNIST and CIFAR-10 datasets.

Our method reduces communication costs by over 70% while preserving high classi-
fication accuracy.

e Impact: Provides a scalable, efficient solution for large-scale distributed optimization
in federated learning.
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We tackle a distributed optimization problem where multiple agents with local

datasets collaborate to minimize a global objective function, represented as the sum
of their individual objectives. The non-independent and identically distributed
(non-i.i.d.) data across agents poses challenges for global optimality, requiring com-
munication to ensure convergence.

The problem is formulated as a consensus problem:
N

where ¢(z) represents nonsmooth part of the objective function, and z is the global
consensus variable.
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Algorithm 1 Event-Based Distributed Learning with Over-Relaxed ADMM
Require: Number of agents N, number of rounds ¢,,.., local objective functions f, penalty parameter p,
communication thresholds AY, A*, reset period T
Require: Initialize 3%6 = Xy, ZA/’() = C() = Xy, ,&7,_1 = UE’)
for k =0 to t,.. doO
fori=1to N do
% < event-based receive of zj.1 — 2y
U% = up_ | + ox; — 2,23 + (1 = 04)2,2_1 |
Ty = argming: f'(z") + 5z’ — 2 + | | |
event-based send of d; ,, — dy, where d; | = ax | + v
end for
(. + event-based receive of di,  — dyy

Agent ¢

—> Local Training

Agent N—+1

Zkp1 = argmin, g(z) + %Lz — G+ (1 — a)z]? —> Global Aggregation

event-based send of 2,1 — 2y
if mod(k+1,T) =0 then

perform reset — (. = G, 2k = 2
end if

end for

A communication is triggered by the agent if the value d},, deviates by more than
the predefined threshold A > 0 from the last communicated value dfk]. Specifically,

communication occurs if |d},, — di,| > A? and the difference d},, — dj; is then sent

out. If |2}, — zjy| > A% and the difference z; ,, — 27, is sent out by the server.
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Event-Based Communication in Federated Learning

Event-based communication reduces communication by triggering updates only when
necessary and is robust to heterogeneous data-distributions among agents and com-
munication failures.

Event-based communication is also effective in a distributed learning setting, where the
aim is to minimize » " f'(z), see [1] for more details.

he event-based framework reduces communication by only transmitting updates when
significant changes occur. We established the following theoretical result in a convex

setting,
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where &, is the server variable and &, is the optimizer of > " f'(x). Furthermore, A
represents the error arising from the event-based communication which scales by the
number of agents, kp is a function of the relaxation parameter o and the condition
number x of the objective function > " . f'(x), and € is a parameter that scales the
step-size of the algorithm.
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Emprical Evaluation

Event-based communication reduces communication cost and result in a better trade-
off compared to well-known baselines FedAvg, FedProx and FedADMM.
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he figure shows the communication load versus accuracy trade-off for different methods
applied to two distinct problems: linear regression (left panel), and LASSO (right panel).
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The left panel compares the communication load versus solution accuracy for different
communication methods applied to the linear regression problem. The right panel visu-
alizes the agent network with 50 agents connected by 1762 edges.
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